Comparative Genome Assembly

Lessons learned while building the first

comparative genome assembler, AMOScmp

Adam M Phillippy
Center for Bioinformatics and Computational Biology




shearing

~
i

~ >\

@ sequencing

assembly
 C—




WGS assembly

¢ Overlap reads
— Identify reads with shared k-mers
— calculate edit distance
e Layout reads
— walk the overlap graph
— hierarchically build contigs

e Generate consensus
— multi-align read layouts

3 JT Ggﬂ""
S0




Limitations; of WGS

¢ Algorithmically hard

— Overlap reads

e 70,000 choose 2 = 2.5 billion combinations
— hard for large eukaryotic genomes

— Layout reads

e Interpret the overlap graph
— hard for low coverage projects (too few edges)
— hard for repetitive projects (too many edges)




AMOScmp evenview

o Pick a reference seguence
e assembly template

e Align target reads to the reference
e 2.5 hillion - 70,000 combinations

e Infer read relationships from alignments
o if their mappings overlap, they must overlap

e Create read layout
e fine tune the mappings

e Build a consensus




Picking a reference

o The closer the better

— seguence similarity
e high identity
— structural similarity

e Similar repeat distributions
o few rearrangements

e Preferably complete

— non-contiguous reference
o fragmented results
o forced alignments
e sSingletons




Mapping the reads

¢ Generate read to reference alignments
— using MUMmer (nucmer)

e Pick the correct alignments
— using modified LIS algorithm
— allow fragmented mappings
— allow multiple, equivalent mappings

e Select repeat copies
— use mate information
— “randomly” place leftovers




reference




Longest Increasing
SUBSEQUERCE

o Problem

— For a list ofn integers, find the longest strictly
Increasing subsequence from left to right

-5 35 4
e Complexity
— O(nlog n) via greedy set cover

— O(n?) via dynamic programming
e O(I) forn<I|/logl




LIS for alignments

¢ Alignments are not integers
e S =3+ (len~idy;) — max(olapR, olapQ)
— reward greater length and identity

— force mutually consistent ordering
— penalize overlap




LIS with repeats

o Problem

— For a list ofn integers, find a set of disjoint
subsequences within a given length of the LIS







Making the layout

¢ Locate all alignment breaks

e For each break, count yay and nay reads
— scan across the reference from left to right
— read heap contains all the spanning reads

— count supporting, discounting, fuzzy
o keep the majority and toss the minority OR tossydheng

e Adjust for polymorphism
— reads inside an insertion need to be handled depara
— reads after an insertion need to be offset accghdin

e Worst caseé(cr logr)




Alignment breaks




Insertions

Reference

Target

Reference Reference

Insertio Target Insertion




Rearrangement

Reference

Reference




\alidating| conflicts







Example results

o Target
— Sreptococcus agalactiae 2603 V/R
e Reference

— Sreptococcus agalactiae NEM316
— Sreptococcus agalactiae 2603 V/R







2603 read placement

o NEM 316 reference o Self reference

— 29,456 alignments — 34,846 alignments
o ~23,000 after LIS e ~26,000 after LIS

— 26,099 total reads — 26,099 total reads
21,816 unique e 25,301 unique
148 unigue mate e 314 unique mate
22 mate constraints e 22 mate constraints
443 random e 442 random
3670 unplaced e 20 unplaced




o 34 accepted e 0 accepted
e 185 rejected o 133 rejected
e 93 unknown e 5 unknown

— 155 contigs — 86 contigs

CA
—_— T —H‘i—'—".._'._'_q—‘ — T - T e l‘:-u—n—"l‘l_b“_q_‘-*_"_p_.'-l_-_.i_.
2603
e — - — — T Y — o D —
NEM
e T T — e P >—— —t T—
0 200,000 400,000 600,000 /800,000
| . 4 > v E
L3
—%p_.r H : _.-.""I_E' I-I- E —i—?—p" 1y 1 : - "'_."I:'—l- -y —
4 - r=
]

nucmer



vs 2603

vs. NEM 316

CelAsm

total
contig size

NS0

N

total
contig size

NSO

total
contig size

604

1,001,743

527

839,315

585

903,184

619

1,593,364

2,294

586

1,393,287

1,479

657

1,488,287

443

1,856,394

5,707

450

1,640,231

4,179

506

1,812,266

243

2,043,842

14,915

277

1,829,976

10,395

293

2,046,730

144

2,100,541

27,364

198

1,891,527

18,142

189

2,110,396

OIN]JOAJWIN] R X

2,119,579

1,919,237

2,132,490

|

o
e
2

| T -
Il,_- I'»---

\

Vs 2603 vs NEM 316 CelAsm LW
gap size |cowerage |Jgaps |gap size |cowerage |gaps|gap size [cowerage |Jcowerage
588(1,168,208 45.92] 511|1,329,996 38.43] 562| 1,261,419 41.61
596| 577,987 73.24] 552| 778,491 63.96] 601| 679,386 68.55
430 301,899 86.02] 415| 530,417 75.45) 455| 365,736 83.07
232 119,917 94.45) 240| 347,697 83.90] 257| 153,824 92.88
132 62,410 97.11] 155| 292,068 86.48] 146 81,406 96.23
E 43,408 97.99] 110( 270,210 87.49 61,544 97.15




Benefits

¢ Low coverage projects

— very thin overlaps permissible
e larger contigs
e higher assembly confidence

e High coverage projects
— algorithmically simplified
o fewer misassemblies
— given a good reference and implementation
e greatly reduced time and memory requirements
— under 5 min / 100 MB for a 5 Mbp genome

— more reads included in the assembly

L




36k 36.9k 37.8k 387k 39.6k 40.5k




Applications

¢ Low coverage projects

e thin overlaps make for bigger contigs
o allow for earlier SNP detection

e Environmental sequencing
o hybrid assembly of multiple strains

e Short read sequencing

e traditional algorithms fail for short reads
— overlaps too short, coverage too deep, non-unitmwverage

e Assembly validation

o self reference alignment breaks
— tandem collapse

— polymorphism
GR .- PO
NGt




Open guestions

¢ Hybrid assembly — polymorphisms

— conventional / comparative e query insertions
e Who comes first? — assembly separately

e Read mapping TRCEIIENS

: : e rearrangements / tandems
— repeats increase runtime . :
se— oy — examine location
e sensitivity / specificity
— exact matches only

e Layout
— missing sequence
e inexact repeat copies

— identity cutoff
— surrogates




Mihai Pop, Adam Phillippy, Arthur LDelcher Steven L. F
Salzberg“ Comparative genome assemblBriefings in , =
Bieinfenmatics. 2004 Sep; 5(3):228.

Mihai Pop
Arthur Delcher

Steven Salzberg
Stefan Kurtz
NIH
Michadl Schatz

Pawel Gajer




