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WGS assemblyWGS assembly

� Overlap reads
– identify reads with shared k-mers
– calculate edit distance

� Layout reads
– walk the overlap graph
– hierarchically build contigs

� Generate consensus
– multi-align read layouts



Limitations of WGSLimitations of WGS

� Algorithmically hard
– Overlap reads

� 70,000 choose 2 = 2.5 billion combinations
– hard for large eukaryotic genomes

– Layout reads
� interpret the overlap graph

– hard for low coverage projects (too few edges)

– hard for repetitive projects (too many edges)



AMOScmpAMOScmp overviewoverview

� Pick a reference sequence
� assembly template

� Align target reads to the reference
� 2.5 billion � 70,000 combinations

� Infer read relationships from alignments
� if their mappings overlap, they must overlap

� Create read layout
� fine tune the mappings

� Build a consensus



Picking a referencePicking a reference

� The closer the better
– sequence similarity

� high identity

– structural similarity
� similar repeat distributions
� few rearrangements

� Preferably complete
– non-contiguous reference

� fragmented results
� forced alignments
� singletons



Mapping the readsMapping the reads

� Generate read to reference alignments
– using MUMmer (nucmer)

� Pick the correct alignments
– using modified LIS algorithm
– allow fragmented mappings
– allow multiple, equivalent mappings

� Select repeat copies
– use mate information
– “randomly” place leftovers



Read alignmentsRead alignments

read

reference



Longest Increasing Longest Increasing 
SubsequenceSubsequence

� Problem
– For a list of n integers, find the longest strictly 

increasing subsequence from left to right
– 5 0 3 5 1 2 4 8 4 9

� Complexity
– O(n log n) via greedy set cover

– O(n2) via dynamic programming
� O(l) for n < l / log l



LIS for alignmentsLIS for alignments

� Alignments are not integers
� Si = Sj + (leni * idy i) – max(olapRij, olapQij)

– reward greater length and identity

– force mutually consistent ordering

– penalize overlap



LIS with repeatsLIS with repeats

� Problem
– For a list of n integers, find a set of disjoint 

subsequences within a given length of the LIS
– 1 5 2 6 3 7 4 8 5 9



Repeat selectionRepeat selection



Making the layoutMaking the layout

� Locate all alignment breaks
� For each break, count yay and nay reads

– scan across the reference from left to right
– read heap contains all the spanning reads
– count supporting, discounting, fuzzy

� keep the majority and toss the minority OR toss everything

� Adjust for polymorphism
– reads inside an insertion need to be handled separately
– reads after an insertion need to be offset accordingly

� Worst caseO(cr log r)



Alignment breaksAlignment breaks

 



InsertionsInsertions
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RearrangementRearrangement
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Validating conflictsValidating conflicts

heap



Handling insertsHandling inserts
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Example resultsExample results

� Target
– Streptococcus agalactiae 2603 V/R

� Reference
– Streptococcus agalactiae NEM316

– Streptococcus agalactiae 2603 V/R





2603 read placement2603 read placement

� NEM 316 reference
– 29,456 alignments

� ~23,000 after LIS

– 26,099 total reads
� 21,816 unique

� 148 unique mate

� 22 mate constraints

� 443 random

� 3670 unplaced

� Self reference
– 34,846 alignments

� ~26,000 after LIS

– 26,099 total reads
� 25,301 unique

� 314 unique mate

� 22 mate constraints

� 442 random

� 20 unplaced



2603 read layout2603 read layout
� NEM 316 reference

– 312 conflicts
� 34 accepted

� 185 rejected

� 93 unknown

– 155 contigs

� Self reference
– 138 conflicts

� 0 accepted

� 133 rejected

� 5 unknown

– 86 contigs



2603 assembly2603 assembly

vs 2603 vs NEM 316 CelAsm LW

X gaps gap size coverage gaps gap size coverage gaps gap size coverage coverage

1 588 1,168,208 45.92 511 1,329,996 38.43 562 1,261,419 41.61 39.31
2 596 577,987 73.24 552 778,491 63.96 601 679,386 68.55 74.10
3 430 301,899 86.02 415 530,417 75.45 455 365,736 83.07 89.88
5 232 119,917 94.45 240 347,697 83.90 257 153,824 92.88 98.56
7 132 62,410 97.11 155 292,068 86.48 146 81,406 96.23 99.79
9 80 43,408 97.99 110 270,210 87.49 97 61,544 97.15 99.97

vs 2603 vs. NEM 316 CelAsm

X N
total 

contig size N50 N
total 

contig size N50 N
total 

contig size N50

1 604 1,001,743 0 527 839,315 0 585 903,184 0
2 619 1,593,364 2,294 586 1,393,287 1,479 657 1,488,287 1,595
3 443 1,856,394 5,707 450 1,640,231 4,179 506 1,812,266 4,981
5 243 2,043,842 14,915 277 1,829,976 10,395 293 2,046,730 12,458
7 144 2,100,541 27,364 198 1,891,527 18,142 189 2,110,396 21,926
9 86 2,119,579 42,679 155 1,919,237 24,239 130 2,132,490 33,953



BenefitsBenefits

� Low coverage projects
– very thin overlaps permissible

� larger contigs
� higher assembly confidence

� High coverage projects
– algorithmically simplified

� fewer misassemblies
– given a good reference and implementation

� greatly reduced time and memory requirements
– under 5 min / 100 MB for a 5 Mbp genome

– more reads included in the assembly





ApplicationsApplications

� Low coverage projects
� thin overlaps make for bigger contigs
� allow for earlier SNP detection

� Environmental sequencing
� hybrid assembly of multiple strains

� Short read sequencing
� traditional algorithms fail for short reads

– overlaps too short, coverage too deep, non-uniform coverage

� Assembly validation
� self reference alignment breaks

– tandem collapse
– polymorphism



Open questionsOpen questions

� Hybrid assembly
– conventional / comparative

� who comes first?

� Read mapping
– repeats increase runtime

� sensitivity / specificity
– exact matches only

� Layout
– missing sequence

� inexact repeat copies
– identity cutoff
– surrogates

– polymorphisms
� query insertions

– assembly separately

– bambus

� rearrangements / tandems
– examine location
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