Comparative Genome Assembly

Lessons learned while building the first

comparative genome assembler, AMOScmp
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WGS assembly

¢ Overlap reads
— Identify reads with shared k-mers
— calculate edit distance
e Layout reads
— walk the overlap graph
— hierarchically build contigs

e Generate consensus
— multi-align read layouts
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Limitations; of WGS

¢ Algorithmically hard

— Overlap reads

e 70,000 choose 2 = 2.5 billion combinations
— hard for large eukaryotic genomes

— Layout reads

e Interpret the overlap graph
— hard for low coverage projects (too few edges)
— hard for repetitive projects (too many edges)




AMOScmp evenview

o Pick a reference seguence
e assembly template

e Align target reads to the reference
e 2.5 hillion - 70,000 combinations

e Infer read relationships from alignments
o if their mappings overlap, they must overlap

e Create read layout
e fine tune the mappings

e Build a consensus




Picking a reference

o The closer the better

— seguence similarity
e high identity
— structural similarity

e Similar repeat distributions
o few rearrangements

e Preferably complete

— non-contiguous reference
o fragmented results
o forced alignments
e sSingletons




Mapping the reads

¢ Generate read to reference alignments
— using MUMmer (nucmer)

e Pick the correct alignments
— using modified LIS algorithm
— allow fragmented mappings
— allow multiple, equivalent mappings

e Select repeat copies
— use mate information
— “randomly” place leftovers
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Longest Increasing
SUBSEQUERCE

o Problem

— For a list ofn integers, find the longest strictly
Increasing subsequence from left to right

-5 35 4
e Complexity
— O(nlog n) via greedy set cover

— O(n?) via dynamic programming
e O(I) forn<I|/logl




LIS for alignments

¢ Alignments are not integers
e S =3+ (len~idy;) — max(olapR, olapQ)
— reward greater length and identity

— force mutually consistent ordering
— penalize overlap




LIS with repeats

o Problem

— For a list ofn integers, find a set of disjoint
subsequences within a given length of the LIS







Making the layout

¢ Locate all alignment breaks

e For each break, count yay and nay reads
— scan across the reference from left to right
— read heap contains all the spanning reads

— count supporting, discounting, fuzzy
o keep the majority and toss the minority OR tossydheng

e Adjust for polymorphism
— reads inside an insertion need to be handled depara
— reads after an insertion need to be offset accghdin

e Worst caseé(cr logr)
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Example results

o Target
— Sreptococcus agalactiae 2603 V/R
e Reference

— Sreptococcus agalactiae NEM316
— Sreptococcus agalactiae 2603 V/R







2603 read placement

o NEM 316 reference o Self reference

— 29,456 alignments — 34,846 alignments
o ~23,000 after LIS e ~26,000 after LIS

— 26,099 total reads — 26,099 total reads
21,816 unique e 25,301 unique
148 unigue mate e 314 unique mate
22 mate constraints e 22 mate constraints
443 random e 442 random
3670 unplaced e 20 unplaced




o 34 accepted e 0 accepted
e 185 rejected o 133 rejected
e 93 unknown e 5 unknown

— 155 contigs — 86 contigs
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vs 2603

vs. NEM 316
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588(1,168,208 45.92] 511|1,329,996 38.43] 562| 1,261,419 41.61
596| 577,987 73.24] 552| 778,491 63.96] 601| 679,386 68.55
430 301,899 86.02] 415| 530,417 75.45) 455| 365,736 83.07
232 119,917 94.45) 240| 347,697 83.90] 257| 153,824 92.88
132 62,410 97.11] 155| 292,068 86.48] 146 81,406 96.23
E 43,408 97.99] 110( 270,210 87.49 61,544 97.15




Benefits

¢ Low coverage projects

— very thin overlaps permissible
e larger contigs
e higher assembly confidence

e High coverage projects
— algorithmically simplified
o fewer misassemblies
— given a good reference and implementation
e greatly reduced time and memory requirements
— under 5 min / 100 MB for a 5 Mbp genome

— more reads included in the assembly
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Applications

¢ Low coverage projects

e thin overlaps make for bigger contigs
o allow for earlier SNP detection

e Environmental sequencing
o hybrid assembly of multiple strains

e Short read sequencing

e traditional algorithms fail for short reads
— overlaps too short, coverage too deep, non-unitmwverage

e Assembly validation

o self reference alignment breaks
— tandem collapse

— polymorphism
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Open guestions

¢ Hybrid assembly — polymorphisms

— conventional / comparative e query insertions
e Who comes first? — assembly separately

e Read mapping TRCEIIENS

: : e rearrangements / tandems
— repeats increase runtime . :
se— oy — examine location
e sensitivity / specificity
— exact matches only

e Layout
— missing sequence
e inexact repeat copies

— identity cutoff
— surrogates
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